IAS HKUST workshop
10/01/2019

Christoph Englert

Three avenues for Higgs phenomenology

- Improving the expected: SM-like Higgs couplings
- lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning
- Improving the expected: SM-like Higgs couplings
- lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning
- Constraining/observing the unexpected:
- Higgs sector CP violation
- Improving the expected: SM-like Higgs couplings
- lifting degeneracies in coupling space for expected uncertainties with adversarial machine learning
- Constraining/observing the unexpected:
- Higgs sector CP violation
- Closing in on new physics in the Higgs sector
- di-Higgs production as a probe of new physics
-

Status of LHC Higgs measurements


```
[ATLAS `18|
```

- everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

Fingerprinting the lack of new physics

SM-like couplings

- large number of unconstrained EFT parameters lead to phenomenological degeneracies = "blind directions"
- one of the most prominent an relevant for Higgs physics
[Ellis et al. `76] [Vainstein et al.` 70]

contact ggH interactions vs. top Yukawa measurements
- way out: resolve C_{0} function for $p_{T}(H) \gtrsim m_{t}$ with one or more jets

SM-like couplings

A word of caution

- way out: resolve C_{0} function for $p_{T}(H) \gtrsim m_{t}$ with one or more jets
[Banfi, Martin, Sanz `13] [Grojean, Salvioni, Schalffer, Weiler `13]
[Schalffer et al`14] [Buschmann et al.` 14] [Buschmann et al. `14] [CE, Kogler, Schulz, Spannowsky` 17]

Role of uncertainties

- comparably small impact of tail uncertainties (lin vs $\log \sim 35 \%$ different shape uncertainty at 150 GeV рт
- decoupled (non-resonant) new physics perturbatively large stats! constrained at relatively low transverse momentum
"fit will always pick region where null hypothesis is under good control"
similar conclusion hold for more abundant top final states

SM-like couplings

- more kinematic information for $\mathrm{H}+2 \mathrm{j}$, which is particularly promising, unfortunately $\mathrm{m}_{\mathrm{t}}=\infty$ SM limit accidentally good

- more kinematic information for $\mathrm{H}+2 \mathrm{j}$, which is particularly promising, unfortunately $\mathrm{m}_{\mathrm{t}}=\infty$ SM limit accidentally good

neural net learns regions that are sensitive to uncertainty....
[Goodfellow et al. `14] [Louppe, Kagan, Cranmer` 16] ...

SML-like couplings

- more kinematic information for $\mathrm{H}+2 \mathrm{j}$, which is particularly promising, unfortunately $\mathrm{m}_{\mathrm{t}}=\infty$ SM limit accidentally good

Friday afternoon
... and can be forced to avoid them \rightarrow most robust constraints
[Goodfellow et al. `14] [Louppe, Kagan, Cranmer` 16] ...

SML-like couplings

- more kinematic information for $\mathrm{H}+2 \mathrm{j}$, which is particularly promising, unfortunately $\mathrm{m}_{\mathrm{t}}=\infty$ SM limit accidentally good

\ldots and can be forced to avoid them \rightarrow most robust constraints
[Goodfellow et al. `14] [Louppe, Kagan, Cranmer` 16] ...

CP violation

- a repeating point of argument is inclusion of $(\operatorname{dim} 6)^{2}$ as there is no clear right or wrong $\mathrm{d} \sigma=\mathrm{d} \sigma^{\mathrm{SM}}+\mathrm{d} \sigma^{\left\{O_{i}\right\}} / \Lambda^{2}$

CP violation

- a repeating point of argument is inclusion of $(\operatorname{dim} 6)^{2}$ as there is no clear right or wrong $\mathrm{d} \sigma=\mathrm{d} \sigma^{\mathrm{SM}}+\mathrm{d} \sigma^{\left\{O_{i}\right\}} / \Lambda^{2}$

- in practice this is (often) not a huge problem for large data samples

CP violation

- a repeating point of argument is inclusion of $(\operatorname{dim} 6)^{2}$ as there is no clear right or wrong $\mathrm{d} \sigma=\mathrm{d} \sigma^{\mathrm{SM}}+\mathrm{d} \sigma^{\left\{O_{i}\right\}} / \Lambda^{2}$

in practice this is (often) not a huge problem for large data samples
- qualitatively different for CP-violation:

- only genuinely CP-sensitive observables carry information signed $\Delta \phi_{j j}$, asymmetries, \ldots.

$\sim(\operatorname{dim} 6)^{2}$

- every CP-even observable carries information xsections, widths, pT spectra...
- a repeating point of argument is inclusion of $(\operatorname{dim} 6)^{2}$ as there is no clear right or wrong $\mathrm{d} \sigma=\mathrm{d} \sigma^{\mathrm{SM}}+\mathrm{d} \sigma^{\left\{O_{i}\right\}} / \Lambda^{2}$

- in practice this is (often) not a huge problem for large data samples
- qualitatively different for CP-violation:

CP violation

[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]

- the linearised upshot see also [Brehmer, Plehn, Tait `17]

$$
\begin{aligned}
O_{H \tilde{G}} & =H^{\dagger} H G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}, \\
O_{H \tilde{W}} & =H^{\dagger} H W^{a \mu \nu} \tilde{W}_{\mu \nu}^{a}, \\
O_{H \tilde{B}} & =H^{\dagger} H B^{\mu \nu} \tilde{B}_{\mu \nu}, \\
O_{H \tilde{W} B} & =H^{\dagger} \tau^{a} H B_{\mu \nu} \tilde{W}^{a \mu \nu}
\end{aligned}
$$

...ignore them for now...

- fit uses ATLAS results for 4 leptons, $\gamma \gamma$
[ATLAS 1708.02810; 1802.04146]
- small stats/observables = blind directions for decay vs production
- non-significant asymmetry 0.3 ± 0.2
- the linearised upshot see also [Brehmer, Plehn, Tait `17]

$$
\begin{array}{c:c}
& \sim \frac{\alpha_{s}}{8 \pi v} G_{\mu \nu}^{a} \tilde{G}^{a \mu \nu} h=\tilde{O}_{G} \\
O_{H \tilde{G}}=H^{\dagger} H G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}, \\
O_{H \tilde{W}}=H^{\dagger} H W^{a \mu \nu} \tilde{W}_{\mu \nu}^{a}, & +\quad \text { Yukawa phases } \\
O_{H \tilde{B}}=H^{\dagger} H B^{\mu \nu} \tilde{B}_{\mu \nu}, &
\end{array}
$$

$$
O_{H \tilde{W} B}=H^{\dagger} \tau^{a} H B_{\mu \nu} \tilde{W}^{a \mu \nu}
$$

...ignore them for now...

- could already narrow this down at $36 / \mathrm{fb}$ by using
- GF vs VBF selections
- lepton decay plane angles
[Bernlochner, CE, Hays, Lohwasser, Mildner, Pilkington, Price, Spannowsky `18]
- the linearised upshot see also [Brehmer, Plehn, Tait `17]

$$
\begin{aligned}
O_{H \tilde{G}} & =H^{\dagger} H G^{a \mu \nu} \tilde{G}_{\mu \nu}^{a}, \\
O_{H \tilde{W}} & =H^{\dagger} H W^{a \mu \nu} \tilde{W}_{\mu \nu}^{a}, \\
O_{H \tilde{B}} & =H^{\dagger} H B^{\mu \nu} \tilde{B}_{\mu \nu},
\end{aligned}
$$

Yukawa phases

$$
O_{H \tilde{W} B}=H^{\dagger} \tau^{a} H B_{\mu \nu} \tilde{W}^{a \mu \nu}
$$

...ignore them for now...

Coefficient $\left[\mathrm{TeV}^{-2}\right]$	$36.1 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$	$3000 \mathrm{fb}^{-1}$
$c_{H \tilde{G}} / \Lambda^{2}$	$[-0.19,0.19]$	$[-0.067,0.067]$	$[-0.021,0.021]$
$c_{H \tilde{\tilde{N}}} / \Lambda^{2}$	$[-11,11]$	$[-3.8,3.8]$	$[-1.2,1.2]$
$c_{H \tilde{B}} / \Lambda^{2}$	$[-5.9,5.9]$	$[-2.1,2.1]$	$[-0.65,0.65]$
$c_{H \tilde{W} B} / \Lambda^{2}$	$[-14,14]$	$[-4.9,4.9]$	$[-1.5,1.5]$

LHC and HL-LHC extrapolations

$$
0
$$

- lifting top-specific blind directions top quark

[Del Duca et al. `03]
- $\mathrm{m}_{\mathrm{t}}=\infty$ SM limit accidentally good

- split GF selection into m-related Higgs pt threshold $\sim 150 \mathrm{GeV}$
- lifting top-specific blind directions

> top quark

- split GF selection into m_{t}-related Higgs pt threshold $\sim 150 \mathrm{GeV}$

- lifting top-specific blind directions

- split GF selection into m_{t}-related Higgs p_{T} threshold $\sim 150 \mathrm{GeV}$

HE pheno

LHC blind spots: Higgs potential

- dimension 6 deformations of the Higgs potential

$$
V\left(H^{\dagger} H\right)_{6} \supset c_{6} / \Lambda^{2}\left(H^{\dagger} H\right)^{3}
$$

[Giudice, Grojean, Pomarol, Rattazzi ` 07]
modify Higgs self-interactions. Large top threshold interference.

HE pheno

LHC blind spots: Higgs potential

HlH pheno

C2HDM \& NMSSM

[Basler, Dawson, CE, Mühlleitner ` 18]

\rightarrow SM-like measurements can show a plethora resonant anomalies diHiggs final states important for BSM discovery
...diHiggs final states quickly lose relevance when approaching EFT limit

LHC blind spots: Higgs potential

- however...
correlated with on-shell Higgs phenomenology

LHC blind spots: Higgs potential

- however...

correlated with on-shell Higgs phenomenology
- easy to arrange EFT coefficients in a way to get spectacular rates, but can doubt physical relevance of such limits (\rightarrow matching)

LHC blind spots: Higgs potential

- however...

correlated with on-shell Higgs phenomenology
- easy to arrange EFT coefficients in a way to get spectacular rates, but can doubt physical relevance of such limits (\rightarrow matching)
- use concrete Higgs sector extensions
- extrapolate 125 GeV signal strengths
- extrapolate exotic Higgs searches
- additional constraints (electron EDMs, flavor, perturbativity, ...)

HE pheno

LHC blind spots: Higgs potential

- however...

- easy to arrange EFT coefficients in a way to get spectacular rates, but can doubt physical relevance of such limits (\rightarrow matching)
- use concrete Higgs sector extensions
- extrapolate 125 GeV signal strengths
in how far are dil: Higgs final states still relevant at 3/ab?
- extrapolate exotic Higgs searches
- additional constraints (electron EDMs, flavor, perturbativity, ...)

HIE pheno

C2HDM \& NMSSM

above Higgs pair threshold

- (multi) resonant diHiggs production (hh, hH,...)

opportunity for diHliggs

Higgs interactions dominant

exotics with large couplings to tops

top interactions dominant

above top pair threshold

- tt final states preferred
- analysis highly modeldependent due to dedicated S-B interference
below top pair threshold
- compressed spectra
- single Higgs competitive
~except b-final states
(trigger etc...)

Higgs in the SM and beyond

- Technical advances have been extremely rapid
- matrix elements
- jets
- machine learning
- coupling extraction
- Opportunity to link the Higgs sector to new physics
- cure SM shortcomings
- LHC probably not be enough to achieve this
- multi-Higgs production as a chance for BSM

